

DATA SHEET DISC BRAKE SKP 95

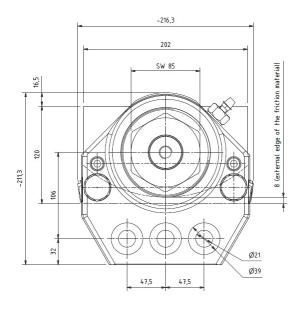
Spring applied, pressure released disc brake

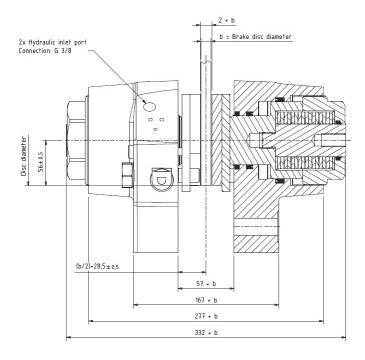
Dellner Bubenzer model SKP 95 spring applied, hydraulically released disc brake offers a reliable and safe method of braking linear or rotary motion.

The brake consists of two symmetrical halves and can be supplied with or without a support. The brakes supplied with a support are adjusted for a 12 mm thick brake disc. When used with thicker discs the brakes can be supplied with spacers.

Each brake half has two cylindrical guide pins that transmit the tangential braking force from the brake lining to the brake housing and support. As a result, any radial forces on the brake pistons are minimized which contributes to longer brake life.

Two springs on each brake half retract the brake pads from the disc when pressure is applied.




The disc spring pack must be adjusted to compensate for brake lining wear and to maintain full brake capacity. An extension of the brake piston through the adjustment nut gives an easy visual way to tell when adjustment is needed.

As an option, the brakes can be equipped with proximity or mechanical switches to indicate brake ON/OFF and/or NEED OF ADJUSTMENT.

Model	Tangential braking force F [N] ¹⁾		Releasing pressure [bar] ⁴⁾	brake disc	etween and lining m]	Estimated life of disc spring pack [no. of strokes]		Friction area per brake [cm²]	Weight [kg]
	max. ²⁾	min. 3)		max. ⁵⁾	min. ⁶⁾	max. ⁷⁾ min. ⁸⁾			
SKP 95-10	12600	10700	45	2x1,0	2x2,5	>2x10 ⁶	>2x10 ⁶	402	46
SKP 95-14	17800	14300	65	2x1,0	2x2,5	>2x10 ⁶	>2x10 ⁶	402	46
SKP 95-18	24000	18200	90	2x1,0	2x2,5	>2x10 ⁶	>2x10 ⁶	402	46
SKP 95-27	33500	27800	115	2x1,0	2x2,5	>6x10 ⁵	>1x10 ⁶	402	46

- 1) Calculated with an average frictional coefficient μ =0,42. Consideration has not been taken for external factors.
- 2) Braking force with correctly adjusted disc spring pack.
- 3) Braking force with maximum recommended air gap before adjustment is needed.
- 4) Pressure to fully release brake.
- 5) Air gap for correctly adjusted brake.
- $\begin{tabular}{ll} 6) Maximum recommended air gap before adjustment is needed. \end{tabular}$
- 7) Valid for minimum spring pack compression.
- 8) Valid for maximum spring pack compression.

TORQUES

The braking torque is calculated from the following formula:

$$M_{brake} = \frac{F \times (D_s - 2h)}{2}$$

q = number of brakes

F1 = braking force according to the table on page 1 [N]

p = pressure [bar]

Ds = brake disc diameter [m]

h = distance disc periphery to piston center [m] (SKP 95: 0,056)

Model	Tangential braking force F [N] ¹⁾		Disc diameter D _s [mm]								
	max. ²⁾	min. 3)	ø400	ø450	ø500	ø600	ø700	ø800	ø900	ø1000	
CKD OF 10		10700	1540	1805	2075	2610	3145	3680	4215	4750	
SKP 95-10	12600		1810	2125	2440	3070	3700	4330	4960	5590	
SKP 95-14		14300	2055	2416	2770	3485	4200	4915	5630	6345	
	17800		2560	3005	3450	4340	5230	6120	7010	7900	
SKP 95-18		18200	2620	3075	3530	4440	5350	6260	7170	8080	
	24000		3455	4055	4655	5855	7055	8255	9455	10655	
SKP 95-27		27800	4000	4695	5390	6780	8170	9560	10950	12340	
	33500		4820	5660	6495	8170	9845	11520	13195	14870	

- 1) Calculated with an average frictional coefficient μ =0,42. Consideration has not been taken for external factors.
- 2) Braking force with correctly adjusted disc spring pack.
- 3) Braking force with maximum recommended air gap before adjustment is needed.

OPTIONS

- Proximity or mechanical switches for on/off, pad wear or "time to adjust" indication.
- Tube connection set (connects the two cylinders to one connection point).
- Supports in different configurations.
- $\bullet \ Customer \ specific \ colour.$

SUITABLE APPLICATIONS

Dellner Bubenzer models SKP are suitable wherever safety brakes are needed, for example in the following types of applications:

Cranes Winches Conveyors Wind mills Emergency stops
Parking applications

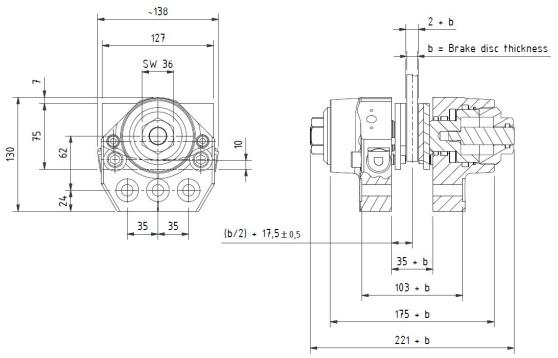
DATA SHEET DISC BRAKE SKP 50

Spring applied, pressure released disc brake

Dellner Bubenzer model SKP 50 spring applied, hydraulically released disc brake offers a reliable and safe method of braking linear or rotary motion.

The brake consists of two symmetrical halves and can be supplied with or without a support. The brakes supplied with a support are adjusted for a 12 mm thick brake disc. When used with thicker discs the brakes can be supplied with spacers.

Each brake half has two cylindrical guide pins that transmit the tangential braking force from the brake lining to the brake housing and support. As a result, any radial forces on the brake pistons are minimized which contributes to longer brake life.



Two springs on each brake half retract the brake pads from the disc when pressure is applied. The disc spring pack must be adjusted to compensate for brake lining wear and to maintain full brake capacity. An extension of the brake piston through the adjustment nut gives an easy visual way to tell when adjustment is needed.

As an option, the brakes can be equipped with proximity or mechanical switches to indicate brake ON/OFF and/or NEED OF ADJUSTMENT.

Model	Tangential braking force F		Releasing pressure		etween and lining	Estimated life of disc spring pack		Friction area per brake	Weight
	[N] ¹⁾		[bar] ⁴⁾	[mm]		[no. of strokes]		[cm²]	[kg]
	max. ²⁾	min. ³)		max. ⁵⁾	min. ⁶⁾	max. ⁷⁾ min. ⁸⁾			
SKP 50-02	3600	2700	30	2x1,0	2x2,0	>2x10 ⁶	>2x10 ⁶	152	12
SKP 50-05	6900	5000	60	2x1,0	2x2,0	>1,8x10 ⁶	>2x10 ⁶	152	12
SKP 50-06	8100	6200	70	2x1,0	2x2,0	>2x10 ⁵	>1x10 ⁶	152	12
SKP 50-09	12400	9200	110	2x1,0	2x2,0	>3x10 ⁴	>2x10 ⁵	152	12

- 1) Calculated with an average frictional coefficient μ =0,42. Consideration has not been taken for external factors.
- $2) \, Braking \, force \, with \, correctly \, adjusted \, disc \, spring \, pack. \,$
- 3) Braking force with maximum recommended air gap before adjustment is needed.
- 4) Pressure to fully release brake.
- 5) Air gap for correctly adjusted brake.
- 6) Maximum recommended air gap before adjustment is needed.
- 7) Valid for minimum spring pack compression.
- 8) Valid for maximum spring pack compression.

TORQUES

The braking torque is calculated from the following formula:

$$M_{brake} = \frac{F \times (D_s - 2h)}{2}$$

q = number of brakes

F1 = braking force according to the table on page 1 [N]

p = pressure [bar]

Ds = brake disc diameter [m]

h = distance disc periphery to piston center [m] (SKP 50: 0,029)

Model	_	al braking	Disc diameter D _s								
	force F [N] ¹⁾		[mm]								
	max. ²⁾	min. 3)	ø300	ø350	ø400	ø450	ø500	ø600	ø700	ø800	
SKP 50-02		2700	325	390	460	525	595	730	865	1000	
3KF 30-02	3600		435	525	615	705	795	975	1155	1695	
SKP 50-05		5000	605	730	855	980	1105	1355	1605	1855	
3KF 30-03	6900		830	1005	1175	1350	1520	1865	2210	2555	
SKP 50-06		6200	750	905	1060	1215	1370	1680	1990	2300	
	8100		980	1180	1385	1585	1790	2195	2600	3005	
SKP 50-09		9200	1110	1340	1570	1800	2030	2490	2950	3410	
	12400		1500	1810	2120	2430	2740	3360	3980	4600	

- 1) Calculated with an average frictional coefficient μ =0,42. Consideration has not been taken for external factors.
- 2) Braking force with correctly adjusted disc spring pack.
- 3) Braking force with maximum recommended air gap before adjustment is needed.

OPTIONS

- Proximity or mechanical switches for on/off, pad wear or "time to adjust" indication.
- Tube connection set (connects the two cylinders to one connection point).
- Supports in different configurations.
- $\bullet \ Customer \ specific \ colour.$

SUITABLE APPLICATIONS

Dellner Bubenzer models SKP are suitable wherever safety brakes are needed, for example in the following types of applications:

Cranes Conveyors Emergency stops
Winches Wind mills Parking applictions